Bücher Wenner
Peter Urban liest im Carolinum
04.11.2025 um 19:30 Uhr
Peter Urban liest im Carolinum
Mathematical Foundations of Infinite-Dimensional Statistical Models
Mathematical Foundations of Infinite-Dimensional Statistical Models
von Evarist Giné, Richard Nickl
Verlag: Cambridge University Press
Gebundene Ausgabe
ISBN: 978-1-107-04316-9
Erschienen am 17.08.2017
Sprache: Englisch
Format: 260 mm [H] x 183 mm [B] x 42 mm [T]
Gewicht: 1500 Gramm
Umfang: 706 Seiten

Preis: 124,20 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 23. Juli.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

Klimabilanz
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis
Biografische Anmerkung

In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.



1. Nonparametric statistical models; 2. Gaussian processes; 3. Empirical processes; 4. Function spaces and approximation theory; 5. Linear nonparametric estimators; 6. The minimax paradigm; 7. Likelihood-based procedures; 8. Adaptive inference.



Evarist Giné (1944-2015) was Head of the Department of Mathematics at the University of Connecticut. Giné was a distinguished mathematician who worked on mathematical statistics and probability in infinite dimensions. He was the author of two books and more than 100 articles.


andere Formate